Nephroprotective Effect of Panax Ginseng: A Systematic Review of Preclinical Studies in Animals

Authors

DOI:

https://doi.org/10.71749/pkj.72

Keywords:

Acute Kidney Injury, Animals, Diabetic Nephropathies, Drug­‑Related Side Effects and Adverse Reactions, Panax, Renal Insufficiency, Chronic

Abstract

Introduction: Our objective was to shed light to the in vivo nephroprotective activity of Panax ginseng in animal models.
Methodology: Systematic review in which the databases Medline (PubMed), Web of Science, Embase and Virtual Health Library were used to search for articles. The eligibility criteria were preclinical in vivo trials that evaluated the nephroprotective effect of P. ginseng by dosing biochemical markers in serum or urine.
Results: Forty­‑five controlled pre­‑clinical trials were included. Among the 16 studies that employed the animal model of diabetes kidney disease, 14 observed a nephroprotective effect of P. ginseng derivatives. All 30 studies employing animal models of kidney injury induced by drugs or nephrotoxic substances or caused by ischemia­‑reperfusion found P. ginseng to have a nephroprotective effect.
Conclusion: The P. ginseng shows remarkable nephroprotective effects in different animal models of nephropathy. Therefore, its use is promising as an adjuvant in the treatment of diabetes kidney disease and prevention of drug‑induced nephropathy. Further randomized controlled clinical trials in humans are required to validate these findings.

Downloads

Download data is not yet available.

References

Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin. 2008; 29: 1109-18. doi: 10.1111/j.1745-7254.2008.00869.x.

Agência Nacional de Vigilância Sanitária (ANVISA). Formulário de Fitoterápicos: farmacopeia brasileira. 2. ed. Brasília: ANVS; 2021.

Ru W, Wang D, Xu Y, He X, Sun YF, Qian L, et al. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey), Drug Discov Ther. 2015; 9: 23-32. doi: 10.5582/doi.2015.01004.

Jin D, Zhang Y, Zhang Y, Duan L, Zhou R, Duan Y, et al. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Front Pharmacol. 2021; 26: 734151. doi: 10.3389/fphar.2021.734151.

Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic Potential of Ginsenosides as an Adjuvant Treatment for Diabetes. Front Pharmacol. 2018; 1: 423. doi: 10.3389/fphar.2018.00423.

Coleman CJ, Weeda ER, Khart A, Bookhart B, Baker WL. Impact of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers on renal and mortality outcomes in people with Type 2 diabetes and proteinuria. Diabet Med. 2020; 37: 44-52. doi: 10.1111/dmc.14107.

Gonzalez DE, Foresto RD, Ribeiro AB. SGLT-2 inhibitors in diabetes: a focus on renoprotection. Rev Assoc Med Bras. 2020; 66: 17-24. doi: 10.1590/1806-9282.66

Xu X, Lu Q, Wu J, Li Y, Sun J. Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. Inflammopharmacology. 2017; 25: 33-40. doi: 10.1007/s10787-016-0296-x.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: 71. doi: 10.1136/bmj.n71.

Hoijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hottinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14: 43. doi: 10.1186/1471-2288-14-43.

Kim CS, Jo K, Kim JS, Pyo MK, Kim J. GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2017; 17: 430. doi: 10.1186/s12906-017-1925-7.

Karunasagara S, Hong GL, Park SR, Lee NH, Jung DY, Kim TW, et al. Korean red ginseng attenuates hyperglycemia-induced renal inflammation and fibrosis via accelerated autophagy and protects against diabetic kidney disease. J Ethnopharmacol. 2020; 254: 112693. doi: 10.1016/j.jep.2020.112693.

Shi Y, Gao Y, Wang T, Wang X, He J, Xu J, et al. Ginsenoside Rg1 Alleviates Podocyte EMT Passage by Regulating AKT/GSK3 β/β-Catenin Pathway by Restoring Autophagic Activity. Evid Based Complement Alternat Med. 2020; 2020: 1903627. doi: 10.1155/2020/1903627.

Kim YJ, Lee MY, Son HY, Park BK, Ryu SY, Jung JY. Red ginseng ameliorates acute cisplatin-induced nephropathy. Planta Med. 2014; 80: 645-54. doi: 10.1055/s-0034-1368571.

Baek SH, Shin BK, Kim NJ, Chang SY, Park JH. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. J Ginseng Res. 2017; 41: 233-9. doi: 10.1016/j.jgr.2016.03.008.

Yousef MI, Hussein HM. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor PS3, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Food Chem Toxicol. 2015; 78: 17-25. doi: 10.1016/j.fct.2015.01.014.

Kalkan Y, Kapakin KA, Kara A, Atabay T, Karadeniz A, Simsek N, et al. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J Mol Histol. 2012; 43: 603-13. doi: 10.1007/s10735-012-9412-4.

Lee YK, Chin YW, Choi YH. Effects of Korean red ginseng extract on acute renal failure induced by gentamicin and pharmacokinetic changes by metformin in rats. Food Chem Toxicol. 2013; 59: 153-9. doi: 10.1016/j.fct.2013.05.025.

Shin HS, Yu M, Kim M, Choi HS, Kang DH. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. Lab Invest. 2014; 94: 1147-60. doi: 10.1038/labinvest.2014.101.

Karadeniz A, Yildirim A, Simsek N, Turhan H, Kalkan Y, Celebi F. Effect of Panax ginseng on gentamicin sulphate-induced kidney toxicity in rats. Revue Med. Vet. 2008; 4: 215-20.

Kim El, Oh HA, Choi HJ, Park JH, Kim DH, Kim NJ. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats. J Ginseng Res. 2013; 37: 87-93. doi: 10.5142/jgr.2013.37.87.

El Denshary ES, Al-Gahazali MA, Mannaa FA, Salem HA, Hassan NS, Abdel-Wahhab MA. Dietary honey and ginseng protect against carbon tetrachloride-induced hepatomephrotoxicity in rats. Exp Toxicol Pathol. 2012; 64: 753-60. doi: 10.1016/j.etp.2011.01.012.

Zhu Y, Zhu C, Yang H, Deng J, Fan D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res. 2020;155: 104746. doi: 10.1016/j.phrs.2020.104746.

Huang Q, Zhang SP, Shi ZL. Role of ginseng polysaccharides in renal fibrosis via cAMP/PKA/CREB signaling pathway in diabetic nephropathy. Chin Pharmacol Bull. 2018; 34: 695-701. doi: 10.3969/j.lsqn.1001-1978.2018.05.021.

Su WY, Li Y, Chen X, Li X, Wei H, Liu Z, et al. Ginsenoside Rh1 Improves Type 2 Diabetic Nephropathy through AMPK/ PI3/CAI+Mediated Inflammation and Apoptosis Signaling Pathway. Am J Chin Med. 2021; 49: 1215-33. doi: 10.1142/s0192415x21500580.

Jung E, Pyo MK, Kim J. Pectin-Lyase-Modified Ginseng Extract and Ginsenoside Rd inhibits High Glucose-Induced ROS Production in Mesangial Cells and Prevents Renal Dysfunction in db/db Mice. Molecules. 2021; 26: 367. doi: 10.3390/molecules26020367.

Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Effects of heat-processed ginseng and its active component ginsenoside -GNS)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol Pharm Bull. 2010; 33: 1077-81. doi: 10.1248/bpb.33.1077.

Quan HY, Kim DY, Chung SH. Korean red ginseng extract alleviates advanced glycation end product-mediated renal injury. J Ginseng Res. 2013; 37: 187-93. doi: 10.5142/jgr.2013.37.187.

Kang KS, Kim HY, Yamabe N, Nagai R, Yokozawa T. Protective effect of sun ginseng against diabetic renal damage. Biol Pharm Bull. 2006; 29: 1678-84. doi: 10.1248/bpb.29.1678.

Kim HY, Kang KS, Yamabe N, Yokozawa T. Comparison of the effects of Korean ginseng and heat-processed Korean ginseng on diabetic oxidative stress. Am J Chin Med. 2008; 36: 989-1004. doi: 10.1142/S0192415X08006417.

Kang KS, Yamabe N, Kim HY, Yokozawa T. Role of maltoi in advanced glycation end products and free radicals: in-vitro and in-vivo studies. J Pharm Pharmacol. 2008; 60: 445-52. doi: 10.1211/jpp.60.4.0006.

Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol. 2008; 591: 266-72. doi: 10.1016/j.ejphar.2008.06.077.

Yokozawa T, Liu ZW. The role of ginsenoside-Rd in cisplatin-induced acute renal failure. Ren Fall. 2000; 22: 115-27. doi: 10.1081/idi-100100858.

Jung K, An JM, Eom DW, Kang KS, Kim SN. Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats. J Ginseng Res. 2017; 41: 188-94. doi: 10.1016/j.jgr.2016.03.001.

Park JY, Choi P, Kim T, Ko H, Kim HK, Kang KS, et al. Protective Effects of Processed Ginseng and Its Active Ginsenosides on Cisplatin-Induced Nephrotoxicity: In Vitro and in Vivo Studies. J Agric Food Chem. 2015; 63: 5964-9. doi: 10.1021/acs.jafc.5b00782.

Zhai J, Gao H, Wang S, et al. Ginsenoside Rg3 attenuates cisplatin-induced kidney injury through inhibition of apoptosis and autophagy-inhibited NLRP3. J Biochem Mol Toxicol. 2021; 35: e22896. doi: 10.1002/jbt.22896.

Qadir MJ, Tahir M, Lone KP, Munir B, Sami W. Protective role of ginseng against gentamicin induced changes in kidney of albino mice. J Ayub Med Coll Abbottabad. 2011; 23: 53-7.

Doh KC, Lim SW, Piao SG, Jin L, Heo SB, Zheng YF, et al. Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. Am J Nephrol. 2013; 37: 421-33. doi: 10.1159/000349921.

Ragab TI, Ali NA, El Gendy AN, Mohamed SH, Shalby AB, Farrag AH, et al. Renoprotective and therapeutic effects of newly water, ethanol, and butanol ginseng fractions in hypertensive and chronic kidney disease with L-NAME. Biomed Pharmacother. 2021;142: 111978. doi: 10.1016/j.biopha.2021.111978.

Qi ZL, Wang Z, Li W, Hou JG, Liu Y, Li XD, et al. Nephroprotective Effects of Anthocyanin from the Fruits of Panax ginseng (GFA) on Cisplatin-Induced Acute Kidney Injury in Mice. Phytother Res. 2017; 31: 1400-9. doi: 10.1002/ptr.5867.

Lim SW, Doh KC, Jin L, Jin J, Piao SG, Heo SB, et al. Ginseng treatment attenuates autophagic cell death in chronic cyclosporine nephropathy. Nephrology. 2014;19: 490-9. doi: 10.1111/nep.12273.

Elbeh15, El-Karim DG. Potential amelorative effect of panax ginsengonhepatoremal damage counterdihydroxurea-treated rats. Slovenian Vet Res. 2019; 56: 595-606. doi: 10.26873/swr-798-2019.

Mansour HH. Protective effect of ginseng against gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats. EXCLI J. 2013; 12: 766-77.

Wang H, Teng Y, Li S, Li Y, Li H, Jiao L, et al. UHPLC-MS-Based Serum and Urine Metabolomics Reveals the Anti-Diabetic Mechanism of Ginsenoside Re In Type 2 Diabetic Rats. Molecules. 2021; 26: 6657. doi: 10.3390/molecules26216657.

Li RY, Zhang WZ, Yan XT, Hou JG, Wang Z, Ding CB, et al. Arginyl-fructosyl-glucose, a Major Malliard Reaction Product of Red Ginseng, Attenutase Cisplatin-Induced Acute Kidney Injury by Regulating Nuclear Factor kB and Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathways. J Agric Food Chem. 2019; 67: 5754-63. doi: 10.1021/acs.jafc.9b00540.

Zhang JJ, Zhou YD, Liu YB, Wang JO, Li KX, Gong XJ, et al. Protective Effect of 20(R)-Ginsenoside Rg3 Against Cisplatin-Induced Renal Toxicity via PI3K/AKT and NF-kB Signaling Pathways Based on the Premise of Ensuring Anticancer Effect. Am J Chin Med. 2021; 49:1739-56. doi: 10.1142/s0192415x21500828.

Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, et al. Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. Phytomedicine. 2019; 61: 152862. doi: 10.1016/j.phymed.2019.152862.

Fan Y, Xia J, Jia D, Zhang M, Zhang Y, Huang G, et al. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage. Pharm Biol. 2016; 54:1815-21. doi: 10.3109/13880209.2015.1129543.

Li W, Wang JQ, Zhou YD, Hou JG, Liu Y, Wang YP, et al. Rare Ginsenoside 20(R)-Rg3 Inhibits D-Galactose-Induced Liver and Kidney Injury by Regulating Oxidative Stress-Induced Apoptosis. Am J Chin Med. 2020; 48: 1141-57. doi: 10.1142/s0192415x20500561.

Sun Q, Meng QT, Jiang Y, Liu HM, Lei SO, Su WT, et al. Protective effect of ginsenoside Rh1 against intestinal ischemia-reperfusion induced acute renal injury in mice. PLoS One. 2013; 8: e80859. doi: 10.1371/journal.pone.0080859.

Li Y, Hou JG, Liu Z, Gong XJ, Hu JN, Wang YP, et al. Alleviative effects of 20(R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-kB signaling pathways in C57BL/6 mice. J Ethnopharmacol. 2021; 267: 113500. doi: 10.1016/j.jep.2020.113500.

Wei XM, Jiang S, Li SS, Sun YS, Wang SH, Liu WC, et al. Endoplasmic Reticulum Stress-Activated PERK-eIF2α-ATF4 Signaling Pathway is involved in the Ameliorative Effects of Ginseng Polysaccharides against Cisplatin-Induced Nephrotoxicity in Mice. ACS Omega. 2021; 6: 8958-66. doi: 10.1021/acsomega.0c06339.

El-Sheikh AAK, Kamel MY. Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: Differential regulation of COX-2/PGE2 pathway. Biomed Pharmaceutic. 2016; 84: 1873-84. doi: 10.1016/j.biopha.2016.10.106.

Shao X, Li N, Zhan J, Sun H, An L, Du P. Protective effect of compound K on diabetic rats. Nat Prod Commun. 2015; 10: 243-5.

Li W, Yan MH, Liu Y, Liu Z, Wang Z, Chen C, et al. Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis. Nutrients. 2016; 8: 566. doi: 10.3390/nus090566.

A/L B Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr. 2019; 13: 754-62. doi: 10.1016/j.dsk.2018.11.054.

Barbosa JH, Oliveira SL, Seara LT. O papel dos produtos finais da glicação avançada (AGE4) no desencadeamento das complicações vasculares do diabetes [The role of advanced glycation end-products (AGE4) in the development of vascular diabetic complications]. Arg Bras Endocrinol Metabol. 2008; 52: 940-50. doi: 10.1590/s0004-27302008000600005.

Ma SW, Bernds IF, Chu TT, Fok BS, Tomlinson B, Critchley LA. Effect of Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes Metab. 2008; 10: 1125-7. doi: 10.1111/j.1463-1326.2008.00858.x.

Dunmer CD, Thome FS, Veronese FV. Doença renal crônica, inflamação e aterosclerose: novos conceitos de um velho problema [Chronic renal disease, inflammation and atherosclerosis: new concepts about an old problem]. Rev Assoc Med Bras. 2007; 53: 446-50. doi: 10.1590/s0104-42302007000500022.

Lee NH, Yoo SR, Kim HG, Cho JH, Son CG. Safety and Tolerability of Panax ginseng Root Extract: A Randomized, Placebo-Controlled, Clinical Trial in Healthy Korean Volunteers. J Alterm Complement Med. 2012; 18: 1061-9. doi: 10.1089/acm.2011.0591.

Chen Y, Lin L, Wu L, Xu Y, Shergis JL, Zhang AL, et al. Effect of Panax Ginseng (G115) Capsules versus Placebo on Acute Exacerbations in Patients with Moderate to Very Severe COPD: A Randomized Controlled Trial. Int J Chron Obstruct Pulmon Dis. 2020; 15: 671-80. doi: 10.2147/COPD.S236425.

Shergis JL, Thien F, Worsnop CJ, Lin L, Zhang AL, Wu L, et al. 12-month randomised controlled trial of ginseng extract for moderate COPD. Thorax. 2019; 74: 539-545. doi: 10.1136/thoraxjnl-2018-212665.

Downloads

Published

31-01-2025

Issue

Section

Review Article

How to Cite

Nephroprotective Effect of Panax Ginseng: A Systematic Review of Preclinical Studies in Animals. (2025). Portuguese Kidney Journal. https://doi.org/10.71749/pkj.72

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >> 

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.